4.5 Article

Morphology, Microhardness, and Flammability of Compatibilized Polyethylene/Clay Nanocomposites

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 50, Issue 7, Pages 1306-1314

Publisher

JOHN WILEY & SONS INC
DOI: 10.1002/pen.21659

Keywords

-

Funding

  1. National Science Fund, Bulgaria [TK01/0110]

Ask authors/readers for more resources

Morphology, thermal properties, and microhardness of ethylene-glycidyl methacrylate copolymer (EGMA)/clay and ethylene-acrylic ester-glycidyl methacrylate terpolymer (EAGMA)/clay nanocomposites with different clay concentrations have been studied. The results have shown that EGMA and EAGMA are highly compatible with the organoclays Cloisite (R) 20A (Cl20A) and Cloisite (R) 30B (Cl30B). Intercalated structures are formed in the whole range of Cl20A loadings investigated, whereas partial degradation of the Cl30B organoclay was observed. The thermal characteristics and microhardness of EGMA/clay nanocomposites suggest that the filler dispersion deteriorates at high concentration. The concentrated EGMA/Cl20A nanocomposites have been used as masterbatches to prepare ternary high density polyethylene (HDPE)/Cl20A and low density polyethylene (LDPE)/Cl20A nanocomposites. Diffractometric characterization and scanning electron microscopy observations of these materials have shown that the intercalated structure of the starting EGMA/Cl20A masterbatches is preserved after dilution with the polyolefins. The results suggest that the silicate platelets remain localized within the EGMA droplets in the diluted nanocomposites. The latter display improved microhardness, whereas the mechanical properties, including elongation at break, are comparable with those of the neat polyolefins. Considerable enhancement of the flame retardant properties has been observed for the ternary nanocomposites. POLYM. ENG. SCI., 50:1306-1314, 2010. (C) 2010 Society of Plastics Engineers

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available