4.7 Article

Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire

Journal

POLYMER DEGRADATION AND STABILITY
Volume 98, Issue 12, Pages 2645-2652

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2013.09.028

Keywords

Layer-by-layer assembly; Flame retardant; Intumescent; Polyurethane foam; Cone calorimetry

Funding

  1. Fire Research Division (FRD) of the Engineering Laboratory (EL) at the National Institute of Standards and Technology (NIST)
  2. Chemtura

Ask authors/readers for more resources

Unique trilayer (TL) thin films of sodium montmorillonite (MMT), poly(allylamine hydrochloride) (PAH) and poly(sodium phosphate) (PSP) are prepared via layer-by-layer (LbL) assembly. This three-component nanocoating completely shuts down melt dripping and reduces heat release of open-celled flexible polyurethane (PU) foam when exposed to direct flame due to a synergistic interaction between PSP and the thermally shielding clay platelets in the condensed phase. Post burn scanning electron microscopy reveals the nanocoating's swollen morphology is able to maintain foam shape, cellular structure, and porosity. Cone calorimetry reveals that 4 TL coated foams (<3 wt% addition) have a peak heat release rate that is reduced by 54% relative to the uncoated control. Using LbL assembly, this work combines two common flame-retarding mechanisms (thermal shielding clay and intumescing PAH/PSP) in a single coating system and provides a foundational platform for new environmentally-benign flame retardant strategies for various substrates (e.g., foam found in home furnishings). (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available