4.7 Review

A review of candidate fire retardants for polyisoprene

Journal

POLYMER DEGRADATION AND STABILITY
Volume 97, Issue 3, Pages 201-213

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2011.12.008

Keywords

Rubber; Natural rubber; Polyisoprene; Fire; Fire retardant; Elastomer

Ask authors/readers for more resources

Polyisoprene elastomer, as natural rubber (NR) or manufactured synthetically (IR), is used in rubber compounds for applications such as tyres, dampers and suspension elements. NR/IR compounds without fire retardants have a low resistance to burning, and emit large quantities of dense smoke. This is because polyisoprene readily decomposes upon heating, by random chain scission, vaporising into a mixture of small aromatic chemical species, which ignite readily and form smoke particles with negligible char residue formation. The effects of commonly used additives on the thermal decomposition and burning of polyisoprene are reviewed; whilst cross-linking agents have significant effects on physical and ageing properties, they have little effect on thermal decomposition and burning. Fillers such as carbon black and silicas reduce the fuel content by dilution of the polymer and the formation of a stabilising residue. Potential approaches for fire retarding IR are reviewed, identifying two main approaches: halogenated additives, or high loadings of aluminium hydroxide (Am), neither of which are satisfactory. Other potential approaches are identified, including the use of phosphorus and nitrogen based additives as intumescent char formers, and with zeolites as char catalysts. Alternative inorganic fire retardants to ATH are identified for use, and zinc hydroxystannate and zinc borate are considered as synergists with ATH. Expandable graphite (EG) is identified for use in other elastomers and has potential for polyisoprene. Nano-scale fire retardants such as montmorillonite clay and multi-walled carbon nanotubes are reported typically as a secondary additive to hydrated fillers, but have yet to make a successful transition to industrial processing. (C) 2011 Elsevier Ltd. All rights reserved,

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available