4.7 Article

Influence of symmetry/asymmetry of the nanoparticles structure on the thermal stability of polyhedral oligomeric silsesquioxane/polystyrene nanocomposites

Journal

POLYMER COMPOSITES
Volume 33, Issue 11, Pages 1903-1910

Publisher

WILEY-BLACKWELL
DOI: 10.1002/pc.22330

Keywords

-

Ask authors/readers for more resources

The thermal degradation of two polyhedral oligomeric silsesquioxane/polystyrene (POSS/PS) nanocomposites of formula R8(SiO1.5)8 POSS/PS and R'1R7(SiO1.5)8 POSS/PS (where R' = Phenyl and R = Cyclopentyl), at 5% of POSS concentration, was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres. Compounds were prepared by the polymerization of styrene in the presence of POSS. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the obtained thermogravimetric (TG) curves were discussed and interpreted. The initial decomposition temperature (Ti), the temperature at 5% mass loss (T5%), the glass transition temperature (Tg), and the activation energy (Ea) of degradation of nanocomposites were determined and compared with each other and with those of unfilled PS. The Ti, T5%, and degradation Ea values of nanocomposites were higher than those of neat PS, thus indicating a better heat resistance and lower degradation rate, and then a better overall thermal stability. The use of POSS with a symmetric structure, in the synthesis of PS based nanocomposite, showed a decrease of Tg value not only in respect to asymmetric POSS/PS nanocomposite but also in respect to neat polymer, thus suggesting an influence of filler structure in the thermal properties of the materials. POLYM. COMPOS., 33:19031910, 2012. (C) 2012 Society of Plastics Engineers

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available