4.7 Article

Electrical and mechanical properties of multi-walled carbon nanotubes reinforced PMMA and PS composites

Journal

POLYMER COMPOSITES
Volume 29, Issue 7, Pages 717-727

Publisher

WILEY-BLACKWELL
DOI: 10.1002/pc.20449

Keywords

-

Ask authors/readers for more resources

The use of multi-walled carbon nanotubes (MWCNT) as reinforcing material for thermoplastic polymer matrices, polymethyl methacrylate (PMMA), and polystyrene (PS) has been studied. MWCNT were synthesized by chemical vapor deposition (CVD) technique using ferrocene-toluene mixture. As-prepared nanotubes were ultrasonically dispersed in toluene and subsequently dispersed in PMMA and PS. Thin polymer composite films were fabricated by solvent casting. The effect of nanotube content on the electrical and mechanical properties of the nanocomposites was investigated. An improvement in electrical conductivity from insulating to conducting with increasing MWCNT content was observed. The carbon nanotube network showed a classical percolating network behavior with a low percolation threshold. Electromagnetic interference (EMI) shielding effectiveness value of about 18 dB was obtained in the frequency range 8.0-12 GHz (X-band), for a 10 vol% CNT loading. An improved composite fabrication process using casting followed by compression molding and use of functionalized MWCNT resulted in increased composites strength.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available