4.7 Article

Facile RAFT synthesis of side-chain amino acids containing pH-responsive hyperbranched and star architectures

Journal

POLYMER CHEMISTRY
Volume 5, Issue 21, Pages 6365-6378

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4py00766b

Keywords

-

Funding

  1. Department of Science and Technology (DST), India [SR/S1/OC-51/2010]

Ask authors/readers for more resources

This work reports the design and synthesis of amino acid-based hyperbranched polymers via the combination of self-condensing vinyl polymerization (SCVP) and reversible addition-fragmentation chain transfer (RAFT) polymerization from tert-butyl carbamate (Boc)-L-valine acryloyloxyethyl ester (Boc-Val-HEA) and S-(4-vinyl)benzyl S'-butyltrithiocarbonate (VBBT) with variable degrees of branching (DB), molecular weights (M-n), and chain end functionalities. Copolymerization kinetics reveal that the molecular weight increases and the DB decreases linearly with time as the branch length increases with the conversion of the Boc-Val-HEA monomer. These hyperbranched polymers, P(Boc-Val-HEA-co-VBBT), with tuneable M-n and DB have been further employed via successive RAFT polymerizations for the synthesis of star polymers with variable arm numbers and lengths. The removal of Boc groups from the polymers results in water soluble pH-responsive cationic hyperbranched architectures with tuneable pH responsiveness, differing from 6.8-7.5 due to the incorporation of various degrees of hydrophobic chain end functionalities with the variation of monomer feed compositions. Dynamic light scattering (DLS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) reveal the interesting self-assembly of the Boc-deprotected star polymers in aqueous media with amino acid-based cores and water soluble thermoresponsive arms. Below the hydrophilic to hydrophobic transition pH and temperature, star polymers remain as unimers in aqueous solution. However, above the transition pH (and below the transition temperature), they form multi-micellar aggregates, which further fuse together to form larger aggregates above the transition temperature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available