4.7 Article

D-Glucose-derived PET copolyesters with enhanced Tg

Journal

POLYMER CHEMISTRY
Volume 4, Issue 12, Pages 3524-3536

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3py00340j

Keywords

-

Funding

  1. MICINN (Spain) [MAT2009-14053-C02]
  2. AGAUR (Catalonia) [2009SGR1469]
  3. FPI

Ask authors/readers for more resources

2,4:3,5-Di-O-methylene-D-glucitol (Glux-diol) and dimethyl 2,4:3,5-di-O-methylene-D-glucarate (Glux-diester) have been copolymerized with ethylene glycol and dimethyl terephthalate by polycondensation in the bulk to produce PET copolyesters as well as their respective homopolyesters. These sugar-based bicyclic monomers were synthesized from 1,5-D-gluconolactone, a commercially accessible compound derived from D-glucose. The PET copolyesters with either the diol or the diacid counterpart partially replaced by Glux had molecular weights in the 20 000-40 000 range and a random microstructure, and they were stable well above 300 degrees C. The PET copolyesters containing more than 10-15% of sugar-based units were amorphous while those displaying crystallinity were observed to crystallize from the melt at much lower rates than PET. The glass transition temperature of PET dramatically increased with the incorporation of Glux, whichever unit, diol or diacid, was replaced, but the enhancing effect was stronger in the former case. A preliminary evaluation of the mechanical behaviour of these copolyesters indicated that the genuine properties of PET were not substantially impoverished by the insertion of Glux. Compared to PET, the copolyesters exhibited a higher hydrolysis rate and an appreciable susceptibility towards biodegradation. The homopolyesters made of these sugar-based monomers could not be obtained with high enough molecular weights so as to be comparatively evaluated with copolyesters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available