4.7 Article

Synthesis, structural characterization and properties of novel functional poly(ether imide)/titania nanocomposite thin films

Journal

POLYMER
Volume 55, Issue 24, Pages 6252-6260

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2014.10.021

Keywords

Diamine with nitrite groups; Poly(ether imide); Titania nanoparticle

Funding

  1. Research Affairs Division Isfahan University of Technology (IUT), Isfahan
  2. National Elite Foundation (NEF)
  3. Iran Nanotechnology Initiative Council (INIC)

Ask authors/readers for more resources

In this study, the synthesis, morphology, and thermal properties of new poly(ether imide)/titania nanohybrid films were investigated. The novel diamine containing functional nitrile groups was prepared in two steps by the nucleophilic substitution reaction and it was fully characterized by different techniques. Reaction of this diamine with pyromellitic dianhydride and 4-aminobenzoic acid gave poly(ether imide) with carboxylic acid end groups. This acid functionalized poly(ether imide) was condense with different amount of TiO2 nanoparticles to provide organic-inorganic bonding, and the flexible films of these hybrid were prepared. The obtained materials were characterized by Fourier transform-infrared spectroscopy, thermogravimetry analysis (TGA), differential scanning calorimetry, X-ray powder diffraction, UV-Vis spectroscopy, field emission-scanning electron microscopy, and transmission electron microscopy (TEM) techniques. TEM of the nanohybrid films with 12% of TiO2 contents confirms well dispersion of nanoparticles in the polymer matrix. TGA data indicated that the thermal behavior of the hybrid materials was increased with an increasing the content of TiO2 nanoparticles. The tensile stress strain of the hybrids was investigated and the resulting nanocomposites showed good mechanical properties. The permeability and selectivity of the PEI/TiO2 membranes as a function of the titania weight percentage were study and the results indicated that the permeabilities of CO2 and N-2 increase with increasing the titania content. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available