4.7 Article

Reversible actuation in main-chain liquid crystalline elastomers with varying crosslink densities

Journal

POLYMER
Volume 55, Issue 23, Pages 5897-5907

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2014.06.088

Keywords

Liquid crystalline elastomer; Shape memory polymer; Actuation

Funding

  1. National Science Foundation [DMR-0758631, DGE-0234629]

Ask authors/readers for more resources

Main-chain smectic-C liquid crystalline elastomers (LCEs) with varying crosslink densities were prepared using a two stage hydrosilylation reaction scheme, in which diene mesogens were first polymerized with hydride-terminated poly(dimethylsiloxane) and subsequently crosslinked using a tetravinyl molecule. Adjustment of prepolymer molecular weight afforded control over network crosslink density. The LCEs exhibit two thermal transitions that are determined by the mesogen composition and are independent of crosslink density: the mesogen glass transition (similar to-30 degrees C) and isotropization (similar to 40 degrees C). Thermal cycling around the isotropization transition under tensile load leads to reversible extension (cooling) and contraction (heating) of the sample, a phenomenon called two-way shape memory or actuation. Actuation strains reached up to 30%, a substantial amount for a polydomain LCE. Creep experiments revealed different dynamics between the smectic and isotropic phases, and comparison to actuation results indicated that actuation involves more than simply a transition between isotropic and smectic rheological behavior. Instead, the phase transition itself plays an important role. Wide-angle X-ray scattering analysis revealed that samples strained to the same level, whether by creep or actuation, showed different orientation levels. This indicates that microstructure is not a unique property of the deformed state and supports the hypothesis that cooling to the liquid crystalline phase under stress is important to achieving the large strains associated with actuation. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available