4.7 Article

On reducing anisotropy in 3D printed polymers via ionizing radiation

Journal

POLYMER
Volume 55, Issue 23, Pages 5969-5979

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2014.07.054

Keywords

Radiation crosslinking; 3D printing; Anisotropy

Funding

  1. DARPA Young Faculty Award Program [D13AP00049]
  2. US FDA Medical Countermeasures Program [FDA-11-1092096]
  3. University of Texas at Dallas Biomedical Device Center [TXMDC55002]
  4. Center for Engineering Innovation [CEI30003]

Ask authors/readers for more resources

The mechanical properties of materials printed using fused filament fabrication (FFF) 3D printers typically rely only on adhesion among melt processed thermoplastic polymer strands. This dramatically limits the utility of FFF systems today for a host of manufacturing and consumer products and severely limits the toughness in 3D printed shape memory polymers. To improve the interlayer adhesion in 3D printed parts, we introduce crosslinks among the polymer chains by exposing 3D printed copolymer blends to ionizing radiation to strengthen the parts and reduce anisotropy. A series polymers blended with specific radiation sensitizers, such as trimethylolpropane triacrylate (TMPTA) and triallyisocyanurate (TAIC), were prepared and irradiated by gamma rays. Differential scanning calorimetry (DSC), tensile testing, dynamic mechanical analysis (DMA) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were employed to characterize the thermomechanical properties and the chemical structure of the various polymers. TAIC was shown to be a very effective radiation sensitizer for 3D printed sensitized polylactic acid (PLA). The results further revealed that crosslinks induced by radiation temperatures near T-g of shape memory systems have prominently enhanced the thermomechanical properties of the 3D printed polymers, as well as the solvent resistance. This enables us to deliver a new generation of inexpensive 3D printable, crosslinked parts with robust thermomechanical properties. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available