4.7 Article

Engineering oligo(ethylene glycol)-based thermosensitive microgels for drug delivery applications

Journal

POLYMER
Volume 51, Issue 17, Pages 3926-3933

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2010.06.030

Keywords

PEG; Microgel; Drug delivery

Funding

  1. US Agency for International Development [PGA-P280422]
  2. PSC-CUNY

Ask authors/readers for more resources

Novel oligo(ethylene glycol)-based thermosensitive microgels with well engineered core-shell structures were developed for storage and delivery of chemotherapeutic agents. The core is consisted of hydrophobic poly[2-(2-methoxyethoxy)ethyl methacrylate], while the shell is consisted of hydrophilic copolymer of 2-(2-methoxyethoxy)ethyl methacrylate with oligo(ethylene glycol) methyl ether methacrylates. These core-shell microgels exhibit tunable volume phase transition temperature and excellent colloidal stability across the physiologically important temperature range. The thickness of the hydrophilic shell can control the collapsing degree (or mesh size) of the hydrophobic core network, which can be utilized to significantly increase the loading capacity of the model hydrophobic drugs dipyridamole by tailoring the shell thickness of microgels. While the microgels are nontoxic, the drug molecules released from the microgels remain active to kill the cancer cells. The presented results provide important guidelines for the rational design of core-shell structured polymeric microgels for drug uptake and release applications. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available