4.7 Article

Preparation and characterization of polylactide/thermoplastic konjac glucomannan blends

Journal

POLYMER
Volume 50, Issue 15, Pages 3698-3705

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2009.06.007

Keywords

Thermoplastic konjac glucomannan; Polylactide; Blending

Funding

  1. Nature Science Foundation of China [29876017]

Ask authors/readers for more resources

In this article, a new degradable thermoplastic konjac glucomannan (TKGM) was synthesized by graft copolymerization of vinyl acetate and methyl acrylate onto konjac glucomannan (KGM). Melt blending of polylactide (PLA) and TKGM has been performed in an effort to improve the processing and comprehensive mechanical properties of PLA and TKGM without compromising its degradability and biocompatibility. The miscibility, processing rheology, phase morphology, thermal properties, interaction, crystallization and mechanical properties of PLA/TKGM blends were investigated in detail. The thermal processing property of PLA/TKGM blend (60/40) was quite close to low density polyethylene (LDPE). As observed from the tan 6 curves in dynamic mechanical analysis, all of the blends exhibit a single glass transition over the entire composition range, indicating that the blends were thermodynamically miscible. The TKGM exhibited a relatively broad endothermic peak at around 120 degrees C, which was lower than that of KGM. And an obvious glass-transition behavior was obtained around 26.6 degrees C. Furthermore, the PLA/TKGM blend (60/40) had a very high elongation at break of 234.8%, while the tensile strength remained as high as 36.5 MPa. And the PLA/TKGM blend (20/80) resulted in an even greater ductility with an elongation at break of 520.5% as compared with 14.1% for pure PLA. A substantial increase in the non-notched impact strength was also observed with the PLA/TKGM blend (20/80) demonstrating two times the impact strength of pure PLA. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available