4.5 Article

Dinuclear copper(II) complexes: Solvent dependent catecholase activity

Journal

POLYHEDRON
Volume 45, Issue 1, Pages 245-254

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.poly.2012.06.087

Keywords

Dinuclear Cu(II); Schiff-base; Catecholase activity; Solvent effect

Funding

  1. University Grants Commission, New Delhi [34-308\2008 (SR)]

Ask authors/readers for more resources

Four new dicopper(II) complexes of phenol based compartmental ligands, namely [Cu-2((LH)-H-1)(2)(H2O)(2)(NO3)(2)] (NO3)(2) (1), [Cu-2(L-2)(OH)(H2O)(NO3)](NO3) (2), [Cu-2(L-3)(2)(H2O)(NO3)](NO3) (3) and [Cu-2(L-4)(H2O)(2)(NO3)] (NO3)(2) (4) [where L-1 = 2-formyl-4-methyl-6-(4-(aminomethyl)-piperidine)iminomethyl-phenolato, L-2 = 2,6-bis(2-amino-2-methyl-1-propanol)iminomethyl-4-methyl-phenolato, L-3 = 2-formy1-4-methyl-6-(benzylamine)iminomethyl-phenolato and L4 = 2,6-bis(2-aminoethylpyridine)iminomethyl-4-methyl-phenolato] have been synthesized and structurally characterized. The single crystal X-ray analyses reveal that all four complexes are dinuclear in nature; complexes 2 and 4 comprise of one respective ligand, whereas 1 and 3 are contain two respective ligands, and the Cu-Cu separation in each case is ca. 3.0 angstrom. All four complexes are soluble in dichloromethane (DCM), methanol, acetonitrile (ACN), dimethylsulfoxide (DMSO), water-methanol (50:50, v/v), and this property has been exploited to access the solvent effect on the catecholase activity of the complexes towards the aerobic oxidation of 3,5-DTBC to 3,5-DTBQ. A UV-Vis spectral study in the different solvents, followed by a kinetic investigation, suggests that the change in spectral behavior follows a similar trend, being dependent on the coordinating ability of the solvent, irrespective of the complex used. The commonly known physical parameters of the solvents, like the dielectric constant, dipole moment, polarity, etc., do not seem to be a key factor in controlling the catecholase activity. However, protic solvents are observed to be a better choice than aprotic solvents for the oxidation of 3,5-DTBC. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available