4.6 Article

Habitat complexity and benthic predator-prey interactions in Chesapeake Bay

Journal

PLOS ONE
Volume 13, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0205162

Keywords

-

Funding

  1. National Oceanic and Atmospheric Administration Chesapeake Bay Office [NA11NMF4570218]
  2. Environmental Protection Agency EPA STAR Fellowship [FP91767501]
  3. National Science Foundation Administration GK-12 program [DGE-0840804]

Ask authors/readers for more resources

In Chesapeake Bay, the soft-shell clam Mya arenaria (thin-shelled, deep-burrowing) exhibits population declines when predators are active, and it persists at low densities. In contrast, the hard clam Mercenaria mercenaria (thick-shelled, shallow-burrowing) has a stable population and age distribution. We examined the potential for habitat and predators to control densities and distributions of bivalves in a field caging experiment (Mya only) and laboratory mesocosm experiments (both species). In the field, clams exposed to predators experienced 76.3% greater mortality as compared to caged individuals, and blue crabs were likely responsible for most of the mortality of juvenile Mya. In mesocosm experiments, Mya had lower survival in sand and seagrass than in shell hash or oyster shell habitats. However, crabs often missed one or more prey items in seagrass, shell, and oyster shell habitats. Predator search times and encounter rates declined when prey were at low densities, likely due to the added cost of inefficient foraging; however, this effect was more pronounced for Mya than for Mercenaria. Mercenaria had higher survival than Mya in mesocosm experiments, likely because predators feeding on Mercenaria spent less time foraging than those feeding on Mya. Mya may retain a low-density refuge from predation even with the loss of structurally complex habitats, though a loss of habitat refuge may result in clam densities that are not sustainable. A better understanding of density-dependent predator-prey interactions is necessary to prevent loss of food-web integrity and to conserve marine resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available