4.6 Article

GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features

Journal

PLOS ONE
Volume 13, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0200283

Keywords

-

Funding

  1. JSPS KAKENHI [17K20009]
  2. Grants-in-Aid for Scientific Research [17K20009] Funding Source: KAKEN

Ask authors/readers for more resources

Lysine succinylation is one of the dominant post-translational modification of the protein that contributes to many biological processes including cell cycle, growth and signal transduction pathways. Identification of succinylation sites is an important step for understanding the function of proteins. The complicated sequence patterns of protein succinylation revealed by proteomic studies highlight the necessity of developing effective species-specific in silico strategies for global prediction succinylation sites. Here we have developed the generic and nine species-specific succinylation site classifiers through aggregating multiple complementary features. We optimized the consecutive features using the Wilcoxon-rank feature selection scheme. The final feature vectors were trained by a random forest (RF) classifier. With an integration of RF scores via logistic regression, the resulting predictor termed GPSuc achieved better performance than other existing generic and species-specific succinylation site predictors. To reveal the mechanism of succinylation and assist hypothesis-driven experimental design, our predictor serves as a valuable resource. To provide a promising performance in large-scale datasets, a web application was developed at http://kurata14.bio.kyutech.ac.jp/GPSuc/.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available