4.6 Article

Muscle regeneration is disrupted by cancer cachexia without loss of muscle stem cell potential

Journal

PLOS ONE
Volume 13, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0205467

Keywords

-

Funding

  1. AMED [18am0101084j0002]
  2. NCNP
  3. Kyowa Hakko Kirin Co., Ltd.
  4. Kyowa Kirin Pharmaceutical Research, Inc.

Ask authors/readers for more resources

Cancer cachexia is a severe, debilitating condition characterized by progressive body wasting associated with remarkable loss of skeletal muscle weight. It has been reported that cancer cachexia disturbs the regenerative ability of skeletal muscle, but the cellular mechanisms are still unknown. Here, we investigated the skeletal muscle regenerative process in mouse colon-26 (C26) tumor cell-bearing mice as a C26 cancer cachexia model. Although the proliferation and differentiation abilities of muscle stem cells derived from the C26 tumor cell-bearing mice were sustained in vitro, the proliferation and differentiation were severely impaired in the cachexic mice. The numbers of both macrophages and mesenchymal progenitors, which are critical players in muscle regeneration, were reduced in the cancer cachexic mice, indicating that the skeletal muscle regeneration process was disrupted by cancer cachexia. Furthermore, the number of infiltrated neutrophils was also reduced in cancer cachexia mice 24 hours after muscle injury, and the expression of critical chemokines for muscle regeneration was reduced in cancer cachexia model mice compared to control mice. Collectively, although the ability to regeneration of MuSCs was retained, cancer cachexia disturbed skeletal muscle regenerative ability by inhibiting the orchestrated muscle regeneration processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available