4.6 Article

Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation

Journal

PLOS ONE
Volume 13, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0202403

Keywords

-

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Conselho Nacional de Pesquisas [308694/2015-5]
  2. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior

Ask authors/readers for more resources

The increasing use of species distribution modeling (SDM) has raised new concerns regarding the inaccuracies, misunderstanding, and misuses of this important tool. One of those possible pitfalls - collinearity among environmental predictors - is assumed as an important source of model uncertainty, although it has not been subjected to a detailed evaluation in recent SDM studies. It is expected that collinearity will increase uncertainty in model parameters and decrease statistical power. Here we use a virtual species approach to compare models built using subsets of PCA-derived variables with models based on the original highly correlated climate variables. Moreover, we evaluated whether modelling algorithms and species data characteristics generate models with varying sensitivity to collinearity. As expected, collinearity among predictors decreases the efficiency and increases the uncertainty of species distribution models. Nevertheless, the intensity of the effect varied according to the algorithm properties: more complex procedures behaved better than simple envelope models. This may support the claim that complex models such as Maxent take advantage of existing collinearity in finding the best set of parameters. The interaction of the different factors with species characteristics (centroid and tolerance in environmental space) highlighted the importance of the so-called idiosyncrasy in species responses to model efficiency, but differences in prevalence may represent a better explanation. However, even models with low accuracy to predict suitability of individual cells may provide meaningful information on the estimation of range-size, a key species-trait for macroecological studies. We concluded that the use of PCA-derived variables is advised both to control the negative effects of collinearity and as a more objective solution for the problem of variable selection in studies dealing with large number of species with heterogeneous responses to environmental variables.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available