4.6 Article

Efficient big data assimilation through sparse representation: A 3D benchmark case study in petroleum engineering

Journal

PLOS ONE
Volume 13, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0198586

Keywords

-

Funding

  1. CIPR/IRIS cooperative research project 4D Seismic History Matching (Research Council of Norway) - Eni [243680]
  2. CIPR/IRIS cooperative research project 4D Seismic History Matching (Research Council of Norway) - Petrobras [243680]
  3. CIPR/IRIS cooperative research project 4D Seismic History Matching (Research Council of Norway) - Total [243680]
  4. Research Council of Norway (PETROMAKS)
  5. 4D seismic project (Research Council of Norway) - Research Council of Norway [230303]
  6. ConocoPhillips Skandinavia AS
  7. Aker BP ASA
  8. Eni Norge AS
  9. Maersk Oil Norway AS
  10. Lundin Norway AS
  11. Halliburton AS
  12. DEA Norge AS
  13. Neptune Energy Norge AS
  14. Schlumberger Norge AS
  15. Wintershall Norge AS of The National IOR Centre of Norway

Ask authors/readers for more resources

Data assimilation is an important discipline in geosciences that aims to combine the information contents from both prior geophysical models and observational data (observations) to obtain improved model estimates. Ensemble-based methods are among the state-of-the-art assimilation algorithms in the data assimilation community. When applying ensemble-based methods to assimilate big geophysical data, substantial computational resources are needed in order to compute and/or store certain quantities (e.g., the Kalman-gain-type matrix), given both big model and data sizes. In addition, uncertainty quantification of observational data, e.g., in terms of estimating the observation error covariance matrix, also becomes computationally challenging, if not infeasible. To tackle the aforementioned challenges in the presence of big data, in a previous study, the authors proposed a wavelet-based sparse representation procedure for 2D seismic data assimilation problems (also known as history matching problems in petroleum engineering). In the current study, we extend the sparse representation procedure to 3D problems, as this is an important step towards real field case studies. To demonstrate the efficiency of the extended sparse representation procedure, we apply an ensemble-based seismic history matching framework with the extended sparse representation procedure to a 3D benchmark case, the Brugge field. In this benchmark case study, the total number of seismic data is in the order of O(10(6)). We show that the wavelet-based sparse representation procedure is extremely efficient in reducing the size of seismic data, while preserving the salient features of seismic data. Moreover, even with a substantial data-size reduction through sparse representation, the ensemble-based seismic history matching framework can still achieve good estimation accuracy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available