4.6 Article

Dipeptidyl peptidase-4 inhibitor gemigliptin protects against vascular calcification in an experimental chronic kidney disease and vascular smooth muscle cells

Journal

PLOS ONE
Volume 12, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0180393

Keywords

-

Funding

  1. Korea Health Technology R & D Project through Korea Health Industry Development Institute (KHIDI) [HI15C0001, HI13C1232]
  2. Ministry of Health & Welfare, Republic of Korea

Ask authors/readers for more resources

Although dipeptidyl peptidase-4 inhibitors, a class of antidiabetic drugs, have various pleiotropic effects, it remains undetermined whether gemigliptin has a beneficial effect on vascular calcification. Therefore, this study was performed to evaluate the effect of gemigliptin on vascular calcification in a rat model of adenine-induced chronic kidney disease and in cultured vascular smooth muscle cells. Gemigliptin attenuated calcification of abdominal aorta and expression of RUNX2 in adenine-induced chronic kidney disease rats. In cultured vascular smooth muscle cells, phosphate-induced increase in calcium content was reduced by gemigliptin. Gemigliptin reduced phosphate-induced PiT-1 mRNA expression, reactive oxygen species generation, and NADPH oxidase mRNA expression (p22(phox) and NOX4). The reduction of oxidative stress by gemigliptin was associated with the downregulation of phospho-PI3K/AKT expression. High phosphate increased the expression of frizzled-3 (FDZ3) and decreased the expression of dickkopf-related protein-1 (DKK-1) in the Wnt pathway. These changes were attenuated by gemigliptin treatment. Gemigliptin restored the decreased expression of vascular smooth muscle cells markers (alpha-SMA and SM22 alpha) and increased expression of osteogenic makers (CBFA1, OSX, E11, and SOST) induced by phosphate. In conclusion, gemigliptin attenuated vascular calcification and osteogenic trans-differentiation in vascular smooth muscle cells via multiple steps including downregulation of PiT-1 expression and suppression of reactive oxygen species generation, phospho-PI3K/AKT, and the Wnt signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available