4.6 Article

Comparing multi-criteria decision analysis and integrated assessment to support long-term water supply planning

Journal

PLOS ONE
Volume 12, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0176663

Keywords

-

Funding

  1. National Research Program 61 on Sustainable Water Management by the Swiss National Science Foundation (SNF) [406140_125901/1]
  2. Swiss National Science Foundation (SNF) [406140_125901] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

We compare the use of multi-criteria decision analysis (MCDA)-or more precisely, models used in multi-attribute value theory (MAVT)-to integrated assessment (IA) models for supporting long-term water supply planning in a small town case study in Switzerland. They are used to evaluate thirteen system scale water supply alternatives in four future scenarios regarding forty-four objectives, covering technical, social, environmental, and economic aspects. The alternatives encompass both conventional and unconventional solutions and differ regarding technical, spatial and organizational characteristics. This paper focuses on the impact assessment and final evaluation step of the structured MCDA decision support process. We analyze the performance of the alternatives for ten stakeholders. We demonstrate the implications of model assumptions by comparing two IA and three MAVT evaluation model layouts of different complexity. For this comparison, we focus on the validity (ranking stability), desirability (value), and distinguishability (value range) of the alternatives given the five model layouts. These layouts exclude or include stakeholder preferences and uncertainties. Even though all five led us to identify the same best alternatives, they did not produce identical rankings. We found that the MAVT-type models provide higher distinguishability and a more robust basis for discussion than the IA-type models. The needed complexity of the model, however, should be determined based on the intended use of the model within the decision support process. The best-performing alternatives had consistently strong performance for all stakeholders and future scenarios, whereas the current water supply system was outperformed in all evaluation layouts. The best-performing alternatives comprise proactive pipe rehabilitation, adapted firefighting provisions, and decentralized water storage and/or treatment. We present recommendations for possible ways of improving water supply planning in the case study and beyond.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available