4.6 Article

Characterisation of the nicotianamine aminotransferase and deoxymugineic acid synthase genes essential to Strategy II iron uptake in bread wheat (Triticum aestivum L.)

Journal

PLOS ONE
Volume 12, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0177061

Keywords

-

Funding

  1. Australian Research Council [LP130100785]
  2. HarvestPlus Challenge Program
  3. Australian Research Council [LP130100785] Funding Source: Australian Research Council

Ask authors/readers for more resources

Iron (Fe) uptake in graminaceous plant species occurs via the release and uptake of Fe-chelating compounds known as mugineic acid family phytosiderophores (MAs). In the MAs biosynthetic pathway, nicotianamine aminotransferase (NAAT) and deoxymugineic acid synthase (DMAS) enzymes catalyse the formation of 2'-deoxymugineic acid (DMA) from nicotianamine (NA). Here we describe the identification and characterisation of six TaNAAT and three TaDMAS1 genes in bread wheat (Triticum aestivum L.). The coding sequences of all six TaNAAT homeologs consist of seven exons with >= 88.0% nucleotide sequence identity and most sequence variation present in the first exon. The coding sequences of the three TaDMAS1 homeologs consist of three exons with >= 97.8% nucleotide sequence identity. Phylogenetic analysis revealed that the TaNAAT and TaDMAS1 proteins are most closely related to the HvNAAT and HvDMAS1 proteins of barley and that there are two distinct groups of TaNAAT proteins-TaNAAT1 and TaNAAT2 -that correspond to the HvNAATA and HvNAATB proteins, respectively. Quantitative reverse transcription-PCR analysis revealed that the TaNAAT2 genes are expressed at highest levels in anther tissues whilst the TaNAAT1 and TaDMAS1 genes are expressed at highest levels in root tissues of bread wheat. Furthermore, the TaNAAT1, TaNAAT2 and TaDMAS1 genes were differentially regulated by plant Fe status and their expression was significantly upregulated in root tissues from day five onwards during a seven-day Fe deficiency treatment. The identification and characterization of the TaNAAT1, TaNAAT2 and TaDMAS1 genes provides a valuable genetic resource for improving bread wheat growth on Fe deficient soils and enhancing grain Fe nutrition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available