4.6 Article

Pro-fibrotic compounds induce stellate cell activation, ECM-remodelling and Nrf2 activation in a human 3D-multicellular model of liver fibrosis

Journal

PLOS ONE
Volume 12, Issue 6, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0179995

Keywords

-

Funding

  1. CTI (Commission for Technology and Innovation)
  2. SCANT (Swiss Center for Applied Human Toxicology)
  3. Swiss Commission for Innovation and Technology (CTI)
  4. Swiss Centre for Applied Human Toxicology (SCAHT)

Ask authors/readers for more resources

Background & Aims Currently most liver fibrosis research is performed in vivo, since suitable alternative in vitro systems which are able to recapitulate the cellular events leading to liver fibrosis are lacking. Here we aimed at generating a system containing cells representing the three key players of liver fibrosis (hepatocyte, Kupffer cells and stellate cells) and assess their response to profibrotic compounds such as TGF-beta 1, methotrexate (MTX) and thioacetamide (TAA). Methods Human cell lines representing hepatocytes (HepaRG), Kupffer cell (THP-1 macrophages) and stellate cells (hTERT-HSC) were co-cultured using the InSphero hanging drop technology to generate scaffold-free 3D microtissues, that were treated with pro-fibrotic compounds (TGF-beta 1, MTX, TAA) for up to 14 days. The response of the microtissues was evaluated by determining the expression of cytokines (TNF-alpha, TGF-beta 1 and IL6), the deposition and secretion of ECM proteins and induction of gene expression of fibrosis biomarkers (e.g. alpha SMA). Induction of Nrf2 and Keap1, as key player of defence mechanism, was also evaluated. Results We could demonstrate that the multicellular 3D microtissue cultures could be maintained in a non-activated status, based on the low expression levels of activation markers. Macrophages were activated by stimulation with LPS and hTERT-HSC showed activation by TGF-beta 1. In addition, MTX and TAA elicited a fibrotic phenotype, as assessed by gene-expression and protein-deposition of ECM proteins such as collagens and fibronectin. An involvement of the antioxidant pathway upon stimulation with pro-fibrotic compounds was also observed. Conclusion Here, for the first time, we demonstrate the in vitro recapitulation of key molecular and cellular events leading to liver fibrosis: hepatocellular injury, antioxidant defence response, activation of Kupffer cells and activation of HSC leading to deposition of ECM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available