4.4 Article

Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil

Journal

ENVIRONMENTAL MICROBIOLOGY REPORTS
Volume 7, Issue 3, Pages 489-497

Publisher

WILEY
DOI: 10.1111/1758-2229.12277

Keywords

-

Funding

  1. Max Planck Society (Munich)
  2. University of Bremen
  3. Deutscher Akademischer Austausch Dienst (DAAD)

Ask authors/readers for more resources

Plant-based sediment microbial fuel cells (PMFCs) couple the oxidation of root exudates in living rice plants to current production. We analysed the composition of the microbial community on anodes from PMFC with natural rice field soil as substratum for rice by analysing 16S rRNA as an indicator of microbial activity and diversity. Terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the active bacterial community on anodes from PMFCs differed strongly compared with controls. Moreover, clones related to Deltaproteobacteria and Chloroflexi were highly abundant (49% and 21%, respectively) on PMFCs anodes. Geobacter (19%), Anaeromyxobacter (15%) and Anaerolineae (17%) populations were predominant on anodes with natural rice field soil and differed strongly from those previously detected with potting soil. In open circuit (OC) control PMFCs, not allowing electron transfer, Deltaproteobacteria (33%), Betaproteobacteria (20%), Chloroflexi (12%), Alphaproteobacteria (10%) and Firmicutes (10%) were detected. The presence of an electron accepting anode also had a strong influence on methanogenic archaea. Hydrogenotrophic methanogens were more active on PMFC (21%) than on OC controls (10%), whereas acetoclastic Methanosaetaceae were more active on OC controls (31%) compared with PMFCs (9%). In conclusion, electron accepting anodes and rice root exudates selected for distinct potential anode-reducing microbial populations in rice soil inoculated PMFC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available