4.6 Article

miR 1296-5p Inhibits the Migration and Invasion of Gastric Cancer Cells by Repressing ERBB2 Expression

Journal

PLOS ONE
Volume 12, Issue 1, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0170298

Keywords

-

Funding

  1. National Natural Science Foundation of China [81370516, 81472703, 81672400]

Ask authors/readers for more resources

The metastasis of gastric cancer, one of the most common tumors, has a molecular mechanism that is still largely unclear. Here we investigated the role of possible tumor-suppressor miR-1296-5p in the cell migration and invasion of ERBB2-positive gastric cancer. It found that miR-1296-5p was significantly down-regulated in gastric cancer tissues. Moreover, it was down-regulated in lymph node metastatic gastric cancer tissues compared with non metastatic gastric cancer tissues. The luciferase activity of ERBB2 3'-untranslated region based reporters constructed in SNU-216 and NUGC-4 gastric cancer cells suggested that ERBB2 was the target gene of miR-1296-5p. Overexpressed miR-1296-5p reduced its target protein level and Rac1 activation, and inhibited the migration and invasion of SNU-216 and NUGC-4 gastric cancer cells. MiR-1296-5p was down-regulated in ERBB2-positive gastric cancer tissues compared with ERBB2-negative gastric cancer tissues. In ERBB2-positive gastric cancers, the miR-1296-5p expression was suppressed in a majority of metastatic lymph node tissues compared to non-metastatic gastric cancer samples. The migration and invasion of gastric cancer cells was inhibited by miR-1296-5p overexpression or herceptin treatment, and rescued by the overexpression of constitutively active Rac1-Q61 L or ERBB2. Taken together, our findings first suggest that miR-1296-5p might be involved in the regulation on the migration and invasion of human gastric cancer cells at least in part via targeting ERBB2/Rac1 signaling pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available