4.8 Article

Visualizing changes in mitochondrial Mg2+ during apoptosis with organelle-targeted triazole-based ratiometric fluorescent sensors

Journal

CHEMICAL SCIENCE
Volume 6, Issue 12, Pages 6841-6846

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5sc02442k

Keywords

-

Funding

  1. New York University
  2. National Science Foundation [CHE-01162222]

Ask authors/readers for more resources

Magnesium is one of the most abundant metals in cells and is essential for a wide range of cellular processes. Magnesium imbalance has been linked to a variety of diseases, but the scarcity of sensors suitable for detection of Mg2+ with subcellular resolution has hampered the study of compartmentalization and mobilization of this ion in the context of physiological and pathological processes. We report herein a family of fluorescent probes for targeted detection of free Mg2+ in specific intracellular organelles, and its application in the study of programmed cell death. The new sensors feature a triazole unit that plays both structural and electronic roles by serving as an attachment group for targeting moieties, and modulating a possible internal charge transfer process for ratiometric ion sensing. A probe decorated with an alkylphosphonium group was employed for the detection of mitochondrial Mg2+ in live HeLa cells, providing the first direct observation of an increase in free Mg2+ levels in this organelle in the early stages of Staurosporine-induced apoptosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available