4.6 Article

High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats

Journal

PLOS ONE
Volume 11, Issue 8, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0161033

Keywords

-

Funding

  1. National Institute of Diabetes and Digestive and Kidney Diseases [R01 DK074867]

Ask authors/readers for more resources

Iron-copper interactions were described decades ago; however, molecular mechanisms linking the two essential minerals remain largely undefined. Investigations in humans and other mammals noted that copper levels increase in the intestinal mucosa, liver and blood during iron deficiency, tissues all important for iron homeostasis. The current study was undertaken to test the hypothesis that dietary copper influences iron homeostasis during iron deficiency and iron overload. We thus fed weanling, male Sprague-Dawley rats (n = 611/group) AIN-93G-based diets containing high (similar to 8800 ppm), adequate (similar to 80) or low (similar to 11) iron in combination with high (similar to 183), adequate (similar to 8) or low (similar to 0.9) copper for 5 weeks. Subsequently, the iron-and copper-related phenotype of the rats was assessed. Rats fed the low-iron diets grew slower than controls, with changes in dietary copper not further influencing growth. Unexpectedly, however, high-iron (HFe) feeding also impaired growth. Furthermore, consumption of the HFe diet caused cardiac hypertrophy, anemia, low serum and tissue copper levels and decreased circulating ceruloplasmin activity. Intriguingly, these physiologic perturbations were prevented by adding extra copper to the HFe diet. Furthermore, higher copper levels in the HFe diet increased serum nonheme iron concentration and transferrin saturation, exacerbated hepatic nonheme iron loading and attenuated splenic nonheme iron accumulation. Moreover, serum erythropoietin levels, and splenic erythroferrone and hepatic hepcidin mRNA levels were altered by the dietary treatments in unanticipated ways, providing insight into how iron and copper influence expression of these hormones. We conclude that high-iron feeding of weanling rats causes systemic copper deficiency, and further, that copper influences the iron-overload phenotype.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available