4.6 Article

A Proteomics Approach to Investigate miR-153-3p and miR-205-5p Targets in Neuroblastoma Cells

Journal

PLOS ONE
Volume 10, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0143969

Keywords

-

Funding

  1. Norwegian Research Council
  2. Western Norway Health Authority
  3. Norwegian Center for Movement Disorders

Ask authors/readers for more resources

MicroRNAs are key regulators associated with numerous diseases. In HEK293 cells, miR-153-3p and miR-205-5p down-regulate alpha-synuclein (SNCA) and Leucine-rich repeat kinase 2 (LRRK2), two key proteins involved in Parkinson's disease (PD). We have used two-dimensional gel electrophoresis (2D-PAGE) coupled to mass spectrometry (MS) to identify a spectrum of miR-153-3p and miR-205-5p targets in neuronal SH-SY5Y cells. We overexpressed and inhibited both microRNAs in SH-SY5Y cells and through comparative proteomics profiling we quantified similar to 240 protein spots from each analysis. Combined, thirty-three protein spots were identified showing significant (p-value < 0.05) changes in abundance. Modulation of miR-153-3p resulted in seven up-regulated proteins and eight down-regulated proteins. miR-205 modulation resulted in twelve up-regulated proteins and six down-regulated proteins. Several of the proteins are associated with neuronal processes, including peroxiredoxin-2 and -4, cofilin-1, prefoldin 2, alpha-enolase, human nucleoside diphosphate kinase B (Nm23) and 14-3-3 protein epsilon. Many of the differentially expressed proteins are involved in diverse pathways including metabolism, neurotrophin signaling, actin cytoskeletal regulation, HIF-1 signaling and the proteasome indicating that miR-153-3p and miR-205-5p are involved in the regulation of a wide variety of biological processes in neuroblastoma cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available