4.6 Article

Development of a Rhizoctonia solani AG1-IB Specific Gene Model Enables Comparative Genome Analyses between Phytopathogenic R-solani AG1-IA, AG1-IB, AG3 and AG8 Isolates

Journal

PLOS ONE
Volume 10, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0144769

Keywords

-

Funding

  1. Federal Ministry of Education and Research (Germany) [0315654B, 031A533, 031A560D]
  2. CLIB Graduate Cluster Industrial Biotechnology at Bielefeld University (Germany) - Federal Ministry of Innovation, Science and Research (MIWF) of the federal state North Rhine-Westphalia, Germany
  3. Article Processing Charge by the Deutsche Forschungsgemeinschaft
  4. Open Access Publication Fund of Bielefeld University

Ask authors/readers for more resources

Rhizoctonia solani, a soil-born plant pathogenic basidiomycetous fungus, affects various economically important agricultural and horticultural crops. The draft genome sequence for the R. solani AG1-IB isolate 7/3/14 as well as a corresponding transcriptome dataset (Expressed Sequence Tags-ESTs) were established previously. Development of a specific R. solani AG1-IB gene model based on GMAP transcript mapping within the eukaryotic gene prediction platform AUGUSTUS allowed detection of new genes and provided insights into the gene structure of this fungus. In total, 12,616 genes were recognized in the genome of the AG1-IB isolate. Analysis of predicted genes by means of different bioinformatics tools revealed new genes whose products potentially are involved in degradation of plant cell wall components, melanin formation and synthesis of secondary metabolites. Comparative genome analyses between members of different R. solani anastomosis groups, namely AG1-IA, AG3 and AG8 and the newly annotated R. solani AG1-IB genome were performed within the comparative genomics platform EDGAR. It appeared that only 21 to 28% of all genes encoded in the draft genomes of the different strains were identified as core genes. Based on Average Nucleotide Identity (ANI) and Average Amino-acid Identity (AAI) analyses, considerable sequence differences between isolates representing different anastomosis groups were identified. However, R. solani isolates form a distinct cluster in relation to other fungi of the phylum Basidiomycota. The isolate representing AG1-IB encodes significant more genes featuring predictable functions in secondary metabolite production compared to other completely sequenced R. solani strains. The newly established R. solani AG1-IB 7/3/14 gene layout now provides a reliable basis for post-genomics studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available