4.6 Article

How and When Do Insects Rely on Endogenous Protein and Lipid Resources during Lethal Bouts of Starvation? A New Application for 13C-Breath testing

Journal

PLOS ONE
Volume 10, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0140053

Keywords

-

Funding

  1. Biaggini Endowment
  2. St. Mary's University
  3. NSFgrant [IOS-1053318]
  4. Division Of Integrative Organismal Systems
  5. Direct For Biological Sciences [1053318] Funding Source: National Science Foundation

Ask authors/readers for more resources

Most of our understanding about the physiology of fasting and starvation comes from studies of vertebrates; however, for ethical reasons, studies thatmonitor vertebrates through the lethal endpoint are scant. Insects are convenientmodels to characterize the comparative strategies used to cope with starvation because they have diverse life histories and have evolved under the omnipresent challenge of food limitation. Moreover, we can study the physiology of starvation through its natural endpoint. In this study we raised populations of five species of insects (adult grasshoppers, crickets, cockroaches, and larval beetles and moths) on diets labeled with either C-13-palmitic acid or C-13-leucine to isotopically enrich the lipids or the proteins in their bodies, respectively. The insects were allowed to become postabsorptive and then starved. We periodically measured the delta C-13 of the exhaled breath to characterize how each species adjusted their reliance on endogenous lipids and proteins as energy sources. We found that starving insects employ a wide range of strategies for regulating lipid and protein oxidation. All of the insects except for the beetle larvae were capable of sharply reducing reliance on protein oxidation; however, this protein sparing strategy was usually unsustainable during the entire starvation period. All insects increased their reliance on lipid oxidation, but while some species (grasshoppers, cockroaches, and beetle larvae) were still relying extensively on lipids at the time of death, other species (crickets and moth larvae) allowed rates of lipid oxidation to return to prestarvation levels. Although lipids and proteins are criticalmetabolic fuels for both vertebrates and insects, insects apparently exhibit a much wider range of strategies for rationing these limited resources during starvation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available