4.6 Article

A Global Perspective on Pyrazinamide Resistance: Systematic Review and Meta-Analysis

Journal

PLOS ONE
Volume 10, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0133869

Keywords

-

Funding

  1. National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH) [R01AI099026]
  2. NIH training grant [2T32AI070114]
  3. South African Research Chairs Initiative of the Department of Science and Technology
  4. National Research Foundation (NRF) of South Africa [UID 86539]
  5. NRF of South Africa
  6. Medical Research Council of South Africa [UID 89519]

Ask authors/readers for more resources

Background Pyrazinamide (PZA) is crucial for tuberculosis (TB) treatment, given its unique ability to eradicate persister bacilli. The worldwide burden of PZA resistance remains poorly described. Methods Systematic PubMed, Science Direct and Scopus searches for articles reporting phenotypic (liquid culture drug susceptibility testing or pyrazinamidase activity assays) and/or genotypic (polymerase chain reaction or DNA sequencing) PZA resistance. Global and regional summary estimates were obtained from random-effects meta-analysis, stratified by presence or risk of multidrug resistant TB (MDR-TB). Regional summary estimates were combined with regional WHO TB incidence estimates to determine the annual burden of PZA resistance. Information on single nucleotide polymorphisms (SNPs) in the pncA gene was aggregated to obtain a global summary. Results Pooled PZA resistance prevalence estimate was 16.2% (95% CI 11.2-21.2) among all TB cases, 41.3%(29.0-53.7) among patients at high MDR-TB risk, and 60.5% (52.3-68.6) among MDR-TB cases. The estimated global burden is 1.4 million new PZA resistant TB cases annually, about 270,000 in MDR-TB patients. Among 1,815 phenotypically resistant isolates, 608 unique SNPs occurred at 397 distinct positions throughout the pncA gene. Interpretation PZA resistance is ubiquitous, with an estimated one in six incident TB cases and more than half of all MDR-TB cases resistant to PZA globally. The diversity of SNPs across the pncA gene complicates the development of rapid molecular diagnostics. These findings caution against relying on PZA in current and future TB drug regimens, especially in MDR-TB patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available