4.6 Article

Gene and MicroRNA Expression Responses to Exercise; Relationship with Insulin Sensitivity

Journal

PLOS ONE
Volume 10, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0127089

Keywords

-

Funding

  1. National Institute of Diabetes, Digestive and Kidney Diseases [R01DK066483, R01DK047936, F32 DK084705]

Ask authors/readers for more resources

Background Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner. Methods and Findings Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r=0.61 (5 corrected for false discovery rate). Enrichment in the 5'-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene. Conclusions These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available