4.6 Article

Distributional Vowel Training Is Less Effective for Adults than for Infants. A Study Using the Mismatch Response

Journal

PLOS ONE
Volume 9, Issue 10, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0109806

Keywords

-

Funding

  1. Netherlands Organization for Scientific Research [277.70.008]

Ask authors/readers for more resources

Distributional learning of speech sounds (i.e., learning from simple exposure to frequency distributions of speech sounds in the environment) has been observed in the lab repeatedly in both infants and adults. The current study is the first attempt to examine whether the capacity for using the mechanism is different in adults than in infants. To this end, a previous even-trelated potential study that had shown distributional learning of the English vowel contrast /ae/similar to/epsilon/ in 2-to-3-month old Dutch infants was repeated with Dutch adults. Specifically, the adults were exposed to either a bimodal distribution that suggested the existence of the two vowels (as appropriate in English), or to a unimodal distribution that did not (as appropriate in Dutch). After exposure the participants were tested on their discrimination of a representative [ae] and a representative [epsilon], in an oddball paradigm for measuring mismatch responses (MMRs). Bimodally trained adults did not have a significantly larger MMR amplitude, and hence did not show significantly better neural discrimination of the test vowels, than unimodally trained adults. A direct comparison between the normalized MMR amplitudes of the adults with those of the previously tested infants showed that within a reasonable range of normalization parameters, the bimodal advantage is reliably smaller in adults than in infants, indicating that distributional learning is a weaker mechanism for learning speech sounds in adults (if it exists in that group at all) than in infants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available