4.6 Article

Combination of Silver Nanoparticles and Drosera binata Extract as a Possible Alternative for Antibiotic Treatment of Burn Wound Infections Caused by Resistant Staphylococcus aureus

Journal

PLOS ONE
Volume 9, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0115727

Keywords

-

Funding

  1. National Centre for Research and Development [LIDER/32/36/L-2/10/NCRiR/2011]
  2. EU FP7 project MOBI4Health [GA. 316094]

Ask authors/readers for more resources

Staphylococcus aureus is the most common infectious agent involved in the development of skin infections that are associated with antibiotic resistance, such as burn wounds. As drug resistance is a growing problem it is essential to establish novel antimicrobials. Currently, antibiotic resistance in bacteria is successfully controlled by multi-drug therapies. Here we demonstrate that secondary metabolites present in the extract obtained from Drosera binata in vitro cultures are effective antibacterial agents against S. aureus grown in planktonic culture and in biofilm. Moreover, this is the first report demonstrating the synergistic interaction between the D. binata extract and silver nanoparticles (AgNPs), which results in the spectacular enhancement of the observed bactericidal activity, while having no cytotoxic effects on human keratinocytes. Simultaneous use of these two agents in significantly reduced quantities produces the same effect, i.e. by killing 99.9% of bacteria in inoculum or eradicating the staphylococcal biofilm, as higher amounts of the agents used individually. Our data indicates that combining AgNPs with either the D. binata extract or with its pure compound (3-chloroplumbagin) may provide a safe and highly effective alternative to commonly used antibiotics, which are ineffective towards the antibiotic-resistant S. aureus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available