4.6 Article

Swab Sample Transfer for Point-Of-Care Diagnostics: Characterization of Swab Types and Manual Agitation Methods

Journal

PLOS ONE
Volume 9, Issue 9, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0105786

Keywords

-

Funding

  1. Defense Advanced Research Projects Agency Defense Sciences Office [HR0011-11-2-0007]

Ask authors/readers for more resources

Background: The global need for disease detection and control has increased effort to engineer point-of-care (POC) tests that are simple, robust, affordable, and non-instrumented. In many POC tests, sample collection involves swabbing the site (e.g., nose, skin), agitating the swab in a fluid to release the sample, and transferring the fluid to a device for analysis. Poor performance in sample transfer can reduce sensitivity and reproducibility. Methods: In this study, we compared bacterial release efficiency of seven swab types using manual-agitation methods typical of POC devices. Transfer efficiency was measured using quantitative PCR (qPCR) for Staphylococcus aureus under conditions representing a range of sampling scenarios: 1) spiking low-volume samples onto the swab, 2) submerging the swab in excess-volume samples, and 3) swabbing dried sample from a surface. Results: Excess-volume samples gave the expected recovery for most swabs (based on tip fluid capacity); a polyurethane swab showed enhanced recovery, suggesting an ability to accumulate organisms during sampling. Dry samples led to recovery of similar to 20-30% for all swabs tested, suggesting that swab structure and volume is less important when organisms are applied to the outer swab surface. Low-volume samples led to the widest range of transfer efficiencies between swab types. Rayon swabs (63 mu L capacity) performed well for excess-volume samples, but showed poor recovery for low-volume samples. Nylon (100 mu L) and polyester swabs (27 mu L) showed intermediate recovery for low-volume and excess-volume samples. Polyurethane swabs (16 mu L) showed excellent recovery for all sample types. This work demonstrates that swab transfer efficiency can be affected by swab material, structure, and fluid capacity and details of the sample. Results and quantitative analysis methods from this study will assist POC assay developers in selecting appropriate swab types and transfer methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available