4.5 Article

Reliable multistage interconnection network design

Journal

PEER-TO-PEER NETWORKING AND APPLICATIONS
Volume 9, Issue 6, Pages 979-990

Publisher

SPRINGER
DOI: 10.1007/s12083-015-0368-5

Keywords

Networks; Multistage Interconnection Network (MIN); Fault-tolerant networks; Disjoint Paths; Terminal Reliability

Ask authors/readers for more resources

High-performance supercomputers generally comprise millions of CPUs in which interconnection networks play an important role to achieve high performance. New design paradigms of dynamic on-chip interconnection network involve a) topology b) synthesis, modeling and evaluation c) quality of service, fault tolerance and reliability d) routing procedures. To construct a dynamic highly fault tolerant interconnection networks requires more disjoint paths from each source-destination node pair at each stage and dynamic rerouting capability to use the various available paths effectively. Fast routing and rerouting strategy is needed to provide reliable performance on switch/link failures. This paper proposes two new architecture designs of fault tolerant interconnection networks named as reliable interconnection networks (RIN-1 and RIN-2). The proposed layouts are multipath multistage interconnection networks providing four disjoint paths for all the source-destination node pairs with dynamic rerouting capability. The designs can withstand switch failures in all the stages (including input and output stages) and provide more reliability. Reliability analysis of various MIN architectures is evaluated. On comparing the results with some existing MINs it is evident that the proposed designs provides higher reliability values and fault tolerance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available