4.6 Article

Differences in Supraspinal and Spinal Excitability during Various Force Outputs of the Biceps Brachii in Chronic- and Non-Resistance Trained Individuals

Journal

PLOS ONE
Volume 9, Issue 5, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0098468

Keywords

-

Funding

  1. Memorial University start-up grant [208604]

Ask authors/readers for more resources

Motor evoked potentials (MEP) and cervicomedullary evoked potentials (CMEP) may help determine the corticospinal adaptations underlying chronic resistance training-induced increases in voluntary force production. The purpose of the study was to determine the effect of chronic resistance training on corticospinal excitability (CE) of the biceps brachii during elbow flexion contractions at various intensities and the CNS site (i.e. supraspinal or spinal) predominantly responsible for any training-induced differences in CE. Fifteen male subjects were divided into two groups: 1) chronic resistance-trained (RT), (n = 8) and 2) non-RT, (n = 7). Each group performed four sets of,5 s elbow flexion contractions of the dominant arm at 10 target forces (from 10%-100% MVC). During each contraction, subjects received 1) transcranial magnetic stimulation, 2) transmastoid electrical stimulation and 3) brachial plexus electrical stimulation, to determine MEP, CMEP and compound muscle action potential (M-max) amplitudes, respectively, of the biceps brachii. All MEP and CMEP amplitudes were normalized to M-max. MEP amplitudes were similar in both groups up to 50% MVC, however, beyond 50% MVC, MEP amplitudes were lower in the chronic RT group (p<0.05). CMEP amplitudes recorded from 10-100% MVC were similar for both groups. The ratio of MEP amplitude/absolute force and CMEP amplitude/absolute force were reduced (p<0.012) at all contraction intensities from 10-100% MVC in the chronic-RT compared to the non-RT group. In conclusion, chronic resistance training alters supraspinal and spinal excitability. However, adaptations in the spinal cord (i.e. motoneurone) seem to have a greater influence on the altered CE.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available