4.6 Article

ER Stress-Induced eIF2-alpha Phosphorylation Underlies Sensitivity of Striatal Neurons to Pathogenic Huntingtin

Journal

PLOS ONE
Volume 9, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0090803

Keywords

-

Funding

  1. Israel Science Foundation [1070/10]
  2. German - Israeli Project Cooperation (Deutsch-Israelische Projektkooperation) [K 5-1]

Ask authors/readers for more resources

A hallmark of Huntington's disease is the pronounced sensitivity of striatal neurons to polyglutamine-expanded huntingtin expression. Here we show that cultured striatal cells and murine brain striatum have remarkably low levels of phosphorylation of translation initiation factor eIF2 alpha, a stress-induced process that interferes with general protein synthesis and also induces differential translation of pro-apoptotic factors. EIF2 alpha phosphorylation was elevated in a striatal cell line stably expressing pathogenic huntingtin, as well as in brain sections of Huntington's disease model mice. Pathogenic huntingtin caused endoplasmic reticulum (ER) stress and increased eIF2 alpha phosphorylation by increasing the activity of PKR-like ER-localized eIF2 alpha kinase (PERK). Importantly, striatal neurons exhibited special sensitivity to ER stress-inducing agents, which was potentiated by pathogenic huntingtin. We could strongly reduce huntingtin toxicity by inhibiting PERK. Therefore, alteration of protein homeostasis and eIF2 alpha phosphorylation status by pathogenic huntingtin appears to be an important cause of striatal cell death. A dephosphorylated state of eIF2 alpha has been linked to cognition, which suggests that the effect of pathogenic huntingtin might also be a source of the early cognitive impairment seen in patients.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available