4.6 Article

Short-Chain Flavor Ester Synthesis in Organic Media by an E-coli Whole-Cell Biocatalyst Expressing a Newly Characterized Heterologous Lipase

Journal

PLOS ONE
Volume 9, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0091872

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) Collaborative Research and Development grant
  2. NSERC Discovery grant [RGPIN 402623-2011]
  3. Innu-Science Canada
  4. BMP Innovation scholarship from NSERC
  5. Fonds de Recherche du Quebec - Nature et Technologies
  6. Fonds de Recherche Quebec - Sante'' Research Scholar Junior 1 Career Award

Ask authors/readers for more resources

Short-chain aliphatic esters are small volatile molecules that produce fruity and pleasant aromas and flavors. Most of these esters are artificially produced or extracted from natural sources at high cost. It is, however, possible to 'naturally' produce these molecules using biocatalysts such as lipases and esterases. A gene coding for a newly uncovered lipase was isolated from a previous metagenomic study and cloned into E. coli BL21 (DE3) for overexpression using the pET16b plasmid. Using this recombinant strain as a whole-cell biocatalyst, short chain esters were efficiently synthesized by transesterification and esterification reactions in organic media. The recombinant lipase (LipIAF5-2) showed good affinity toward glyceryl trioctanoate and the highest conversion yields were obtained for the transesterification of glyceryl triacetate with methanol. Using a simple cetyl-trimethylammonium bromide pretreatment increased the synthetic activity by a six-fold factor and the whole-cell biocatalyst showed the highest activity at 40 degrees C with a relatively high water content of 10% (w/w). The whole-cell biocatalyst showed excellent tolerance to alcohol and short-chain fatty acid denaturation. Substrate affinity was equally effective with all primary alcohols tested as acyl acceptors, with a slight preference for methanol. The best transesterification conversion of 50 mmol glyceryl triacetate into isoamyl acetate (banana fragrance) provided near 100% yield after 24 hours using 10% biocatalyst loading (w/w) in a fluidized bed reactor, allowing recycling of the biocatalyst up to five times. These results show promising potential for an industrial approach aimed at the biosynthesis of short-chain esters, namely for natural flavor and fragrance production in micro-aqueous media.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available