4.6 Article

Hepatic β-Oxidation and Regulation of Carnitine Palmitoyltransferase (CPT) I in Blunt Snout Bream Megalobrama amblycephala Fed a High Fat Diet

Journal

PLOS ONE
Volume 9, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0093135

Keywords

-

Funding

  1. National Natural Science Foundation of China [31172418, 31202005]
  2. China Agriculture Research System [CARS-46-20]

Ask authors/readers for more resources

High-fat diets may promote growth, partly through their protein-sparing effects. However, high-fat diets often lead to excessive fat deposition, which may have a negative impact on fish such as poor growth and suppressive immune. Therefore, this study investigated the effects of a fat-rich diet on the mechanisms of fat deposition in the liver. Three-hundred blunt snout bream (Megalobrama amblycephala) juveniles (initial mass 18.00 +/- 0.05 g) were fed with one of two diets (5% or 15% fat) for 8 weeks. beta-Oxidation capacity and regulation of rate-limiting enzymes were assessed. Large fat droplets were present in hepatocytes of fish fed the high-fat diet. This observation is thought to be largely owing to the reduced capacity for mitochondrial and peroxisomal beta-oxidation in the livers of fish fed the high-fat diet, as well as the decreased activities of carnitine palmitoyltransferase (CPT) I and acyl-CoA oxidase (ACO), which are enzymes involved in fatty-acid metabolism. Study of CPT I kinetics showed that CPT I had a low affinity for its substrates and a low catalytic efficiency in fish fed the high-fat diet. Expression of both CPT I and ACO was significantly down-regulated in fish fed the high-fat diet. Moreover, the fatty-acid composition of the mitochondrial membrane varied between the two groups. In conclusion, the attenuated beta-oxidation capacity observed in fish fed a high-fat diet is proposed to be owing to decreased activity and/or catalytic efficiency of the rate-limiting enzymes CPT I and ACO, via both genetic and non-genetic mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available