4.6 Article

The Molecular Chaperone Binding Protein BiP Prevents Leaf Dehydration-Induced Cellular Homeostasis Disruption

Journal

PLOS ONE
Volume 9, Issue 1, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0086661

Keywords

-

Funding

  1. CNPq [573600/2008-2, 470287/2011-0]
  2. FAPEMIG [CBB-APQ-00070-09]
  3. FINEP [01.09.0625.00]
  4. CNPq
  5. FAPEMIG

Ask authors/readers for more resources

BiP overexpression improves leaf water relations during droughts and delays drought-induced leaf senescence. However, whether BiP controls cellular homeostasis under drought conditions or simply delays dehydration-induced leaf senescence as the primary cause for water stress tolerance remains to be determined. To address this issue, we examined the drought-induced transcriptomes of BiP-overexpressing lines and wild-type (WT) lines under similar leaf water potential (psi(w)) values. In the WT leaves, a psi(w) reduction of -1.0 resulted in 1339 up-regulated and 2710 down-regulated genes; in the BiP-overexpressing line 35S::BiP-4, only 334 and 420 genes were induced and repressed, respectively, at a similar leaf psi(w) = -1.0 MPa. This level of leaf dehydration was low enough to induce a repertory of typical drought-responsive genes in WT leaves but not in 35S::BiP-4 dehydrated leaves. The responders included hormone-related genes, functional and regulatory genes involved in drought protection and senescence-associated genes. The number of differentially expressed genes in the 35S::BiP-4 line approached the wild type number at a leaf psi(w) = -1.6 MPa. However, N-rich protein (NRP)-mediated cell death signaling genes and unfolded protein response (UPR) genes were induced to a much lower extent in the 35S::BiP-4 line than in the WT even at psi(w) = -1.6 MPa. The heatmaps for UPR, ERAD (ER-associated degradation protein system), drought-responsive and cell death-associated genes revealed that the leaf transcriptome of 35S::BiP-4 at psi(w) = -1.0 MPa clustered together with the transcriptome of well-watered leaves and they diverged considerably from the drought-induced transcriptome of the WT (psi(w) = -1.0, 21.7 and 22.0 MPa) and 35S::BiP-4 leaves at psi(w) = -1.6 MPa. Taken together, our data revealed that BiP-overexpressing lines requires a much higher level of stress (psi(w) = -1.6 MPa) to respond to drought than that of WT (psi(w) = -1.0). Therefore, BiP overexpression maintains cellular homeostasis under water stress conditions and thus ameliorates endogenous osmotic stress.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available