4.6 Article

A Vaccine That Co-Targets Tumor Cells and Cancer Associated Fibroblasts Results in Enhanced Antitumor Activity by Inducing Antigen Spreading

Journal

PLOS ONE
Volume 8, Issue 12, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0082658

Keywords

-

Funding

  1. DAMD [W81XWH-10-1-0281]
  2. NIH [P50 CA126752, 1R01CA148748-01A1]

Ask authors/readers for more resources

Dendritic cell (DC) vaccines targeting only cancer cells have produced limited antitumor activity in most clinical studies. Targeting cancer-associated fibroblasts (CAFs) in addition to cancer cells may enhance antitumor effects, since CAFs, the central component of the tumor stroma, directly support tumor growth and contribute to the immunosuppressive tumor microenvironment. To co-target CAFs and tumor cells we developed a new compound DC vaccine that encodes an A20-specific shRNA to enhance DC function, and targets fibroblast activation protein (FAP) expressed in CAFs and the tumor antigen tyrosine-related protein (TRP) 2 (DC-shA20-FAP-TRP2). DC-shA20-FAP-TRP2 vaccination induced robust FAP- and TRP2-specific T-cell responses, resulting in greater antitumor activity in the B16 melanoma model in comparison to monovalent vaccines or a vaccine encoding antigens and a control shRNA. DC-shA20-FAP-TRP2 vaccination enhanced tumor infiltration of CD8-positive T cells, and induced antigen-spreading resulting in potent antitumor activity. Thus, co-targeting of tumor cells and CAFs results in the induction of broad-based tumor-specific T-cell responses and has the potential to improve current vaccine approaches for cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available