4.6 Article

Whole Cell Screen for Inhibitors of pH Homeostasis in Mycobacterium tuberculosis

Journal

PLOS ONE
Volume 8, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0068942

Keywords

-

Funding

  1. National Institutes of Health [AI081725]
  2. Milstein Program in the Chemical Biology of Infectious Diseases
  3. William Randolph Hearst Foundation
  4. NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES [R01AI081725] Funding Source: NIH RePORTER
  5. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM021342] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Bacterial pathogens like Mycobacterium tuberculosis (Mtb) encounter acidic microenvironments in the host and must maintain their acid-base homeostasis to survive. A genetic screen identified two Mtb strains that cannot control intrabacterial pH (pH(IB)) in an acidic environment; infection with either strain led to severe attenuation in mice. To search for additional proteins that Mtb requires to survive at low pH, we introduced a whole-cell screen for compounds that disrupt pHIB, along with counter-screens that identify ionophores and membrane perturbors. Application of these methods to a natural product library identified four compounds of interest, one of which may inhibit novel pathway(s). This approach yields compounds that may lead to the identification of pathways that allow Mtb to survive in acidic environments, a setting in which Mtb is resistant to most of the drugs currently used to treat tuberculosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available