4.6 Article

Basic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Muller) Cells

Journal

PLOS ONE
Volume 8, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0068773

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft [Wi 880/13-2, RE 849/1-1]
  2. Ernst und Berta Grimmke Stiftung, Dusseldorf, Germany

Ask authors/readers for more resources

Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Muller) cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Muller cells of the rat retina and in acutely isolated Muller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP)-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Muller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%)-conditioned Muller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Muller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK-1/-2) in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial) Muller cells are major sources of bFGF in the ischemic retina. Muller cells under physiological conditions or transient hypoxia seem to provide an anti-angiogenic environment, but long-lasting hypoxia causes the release of bFGF, which might significantly co-stimulate neovascularization in the retina.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available