4.6 Article

Vanillin Inhibits Translation and Induces Messenger Ribonucleoprotein (mRNP) Granule Formation in Saccharomyces cerevisiae: Application and Validation of High-Content, Image-Based Profiling

Journal

PLOS ONE
Volume 8, Issue 4, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0061748

Keywords

-

Funding

  1. New Energy and Industrial Technology Development Organization
  2. Ministry of Education, Culture, Sports, Science and Technology, Japan [24370002, 23580113]
  3. Grants-in-Aid for Scientific Research [19057002] Funding Source: KAKEN

Ask authors/readers for more resources

Vanillin, generated by acid hydrolysis of lignocellulose, acts as a potent inhibitor of the growth of the yeast Saccharomyces cerevisiae. Here, we investigated the cellular processes affected by vanillin using high-content, image-based profiling. Among 4,718 non-essential yeast deletion mutants, the morphology of those defective in the large ribosomal subunit showed significant similarity to that of vanillin-treated cells. The defects in these mutants were clustered in three domains of the ribosome: the mRNA tunnel entrance, exit and backbone required for small subunit attachment. To confirm that vanillin inhibited ribosomal function, we assessed polysome and messenger ribonucleoprotein granule formation after treatment with vanillin. Analysis of polysome profiles showed disassembly of the polysomes in the presence of vanillin. Processing bodies and stress granules, which are composed of non-translating mRNAs and various proteins, were formed after treatment with vanillin. These results suggest that vanillin represses translation in yeast cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available