4.6 Article

Catalytic and Functional Roles of Conserved Amino Acids in the SET Domain of the S. cerevisiae Lysine Methyltransferase Set1

Journal

PLOS ONE
Volume 8, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0057974

Keywords

-

Funding

  1. NSF REU Site in Biochemistry at Texas A&M University, NSF [DBI-0552822]
  2. National Institutes of Health [RO1 GM70930]
  3. Texas AgriLife Research

Ask authors/readers for more resources

In S. cerevisiae, the lysine methyltransferase Set1 is a member of the multiprotein complex COMPASS. Set1 catalyzes mono-, di- and trimethylation of the fourth residue, lysine 4, of histone H3 using methyl groups from S-adenosylmethionine, and requires a subset of COMPASS proteins for this activity. The methylation activity of COMPASS regulates gene expression and chromosome segregation in vivo. To improve understanding of the catalytic mechanism of Set1, single amino acid substitutions were made within the SET domain. These Set1 mutants were evaluated in vivo by determining the levels of K4-methylated H3, assaying the strength of gene silencing at the rDNA and using a genetic assessment of kinetochore function as a proxy for defects in Dam1 methylation. The findings indicate that no single conserved active site base is required for H3K4 methylation by Set1. Instead, our data suggest that a number of aromatic residues in the SET domain contribute to the formation of an active site that facilitates substrate binding and dictates product specificity. Further, the results suggest that the attributes of Set1 required for trimethylation of histone H3 are those required for Pol II gene silencing at the rDNA and kinetochore function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available