4.6 Article

Phylogenetic and Molecular Characterization of the Splicing Factor RBM4

Journal

PLOS ONE
Volume 8, Issue 3, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0059092

Keywords

-

Funding

  1. National Science Council of Taiwan [NSC 100-2311-B-001-011-MY3]

Ask authors/readers for more resources

The mammalian multi-functional RNA-binding motif 4 (RBM4) protein regulates alterative splicing of precursor mRNAs and thereby affects pancreas and muscle cell differentiation. RBM4 homologs exist in all metazoan lineages. The C-terminal unstructured domain of RBM4 is evolutionarily divergent and contains stretches of low-complexity sequences, including single amino acid and/or dipeptide repeats. Here we examined the splicing activity, phosphorylation potential, and subcellular localization of RBM4 homologs from a wide range of species. The results show that these RBM4 homologs exert different effects on 59 splice site utilization and exon selection, and exhibit different subnuclear localization patterns. Therefore, the C-terminal domain of RBM4 may contribute to functional divergence between homologs. On the other hand, analysis of chimeric human RBM4 proteins containing heterologous sequences at the C-terminus revealed that the N-terminal RNA binding domain of RBM4 could have a dominant role in determining splicing outcome. Finally, all RBM4 homologs examined could be phosphorylated by an SR protein kinase, suggesting that they are regulated by a conserved mechanism in different species. This study offers a first clue to functional evolution of a splicing factor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available