4.5 Article

Antigenic Detection of Human Strain of Influenza Virus A (H3N2) in Swine Populations at Three Locations in Nigeria and Ghana during the Dry Early Months of 2014

Journal

ZOONOSES AND PUBLIC HEALTH
Volume 63, Issue 2, Pages 106-111

Publisher

WILEY-BLACKWELL
DOI: 10.1111/zph.12210

Keywords

Antigenic detection; human strain; Influenza A (H3N2) virus; swine; Nigeria; Ghana

Funding

  1. John D. and Catherine T. MacArthur Foundation [97944]

Ask authors/readers for more resources

Since the first detection of human H3N2 influenza virus in Taiwanese pigs in 1970, infection of pigs with wholly human viruses has been known to occur in other parts of the world. These viruses, referred to as human-like H3N2 viruses, have been known to cause clinical and subclinical infections of swine populations. Due to the paucity and complete unavailability of information on transmission of influenza viruses from other species, especially humans, to swine in Nigeria and Ghana, respectively, this study was designed to investigate the presence and prevalence of a human strain of influenza A (H3N2) in swine populations at three locations in two cities within these two West African countries in January and February, 2014. Using stratified random technique, nasal swab specimens were collected from seventy-five (75) pigs at two locations in Ibadan, Nigeria and from fifty (50) pigs in Kumasi, Ghana. These specimens were tested directly by a sensitive Quantitative Solid Phase Antigen-detection Sandwich ELISA using anti-A/Brisbane/10/2007 haemagglutinin monoclonal antibody. Influenza virus A/Brisbane/10/2007 (H3N2) was detected among pigs at the three study locations, with an aggregate prevalence of 4.0% for the two locations in Ibadan, Nigeria and also 4.0% for Kumasi, Ghana. Transmission of influenza viruses from other species to swine portends serious sinister prospects for genetic reassortment and evolvement of novel viruses. We therefore recommend that further studies should be carried out to investigate the presence of other circulating human and avian influenza viruses in swine populations in West Africa and also determine the extent of genetic reassortment of strains circulating among these pigs. This would provide an early warning system for detection of novel influenza viruses, which could have pandemic potentials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available