4.6 Article

The Functional Role of the Triceps Surae Muscle during Human Locomotion

Journal

PLOS ONE
Volume 8, Issue 1, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0052943

Keywords

-

Funding

  1. Paris-Sud University
  2. Italian Ministry of University and Research

Ask authors/readers for more resources

Aim: Despite numerous studies addressing the issue, it remains unclear whether the triceps surae muscle group generates forward propulsive force during gait, commonly identified as 'push-off'. In order to challenge the push-off postulate, one must probe the effect of varying the propulsive force while annulling the effect of the progression velocity. This can be obtained by adding a load to the subject while maintaining the same progression velocity. Methods: Ten healthy subjects initiated gait in both unloaded and loaded conditions (about 30% of body weight attached at abdominal level), for two walking velocities, spontaneous and fast. Ground reaction force and EMG activity of soleus and gastrocnemius medialis and lateralis muscles of the stance leg were recorded. Centre of mass velocity and position, centre of pressure position, and disequilibrium torque were calculated. Results: At spontaneous velocity, adding the load increased disequilibrium torque and propulsive force. However, load had no effect on the vertical braking force or amplitude of triceps activity. At fast progression velocity, disequilibrium torque, vertical braking force and triceps EMG increased with respect to spontaneous velocity. Still, adding the load did not further increase braking force or EMG. Conclusions: Triceps surae is not responsible for the generation of propulsive force but is merely supporting the body during walking and restraining it from falling. By controlling the disequilibrium torque, however, triceps can affect the propulsive force through the exchange of potential into kinetic energy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available