4.6 Article

Transfusion of CXCR4-Primed Endothelial Progenitor Cells Reduces Cerebral Ischemic Damage and Promotes Repair in db/db Diabetic Mice

Journal

PLOS ONE
Volume 7, Issue 11, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0050105

Keywords

-

Funding

  1. American Diabetes Association (ADA) [1-10-BS-25]
  2. National Heart, Lung, and Blood Institute [HL-098637, HL-093567]
  3. National Natural Science Foundation of China [NSFC 81070878, 81271214, 81270195, 81270196]

Ask authors/readers for more resources

This study investigated the role of stromal cell-derived factor-1 alpha (SDF-1 alpha)/CXC chemokine receptor 4 (CXCR4) axis in brain and endothelial progenitor cells (EPCs), and explored the efficacy of CXCR4 primed EPCs in treating ischemic stroke in diabetes. The db/db diabetic and db/+ mice were used in this study. Levels of plasma SDF-1 alpha and circulating CD34+CXCR4+ cells were measured. Brain SDF-1 alpha and CXCR4 expression were quantified at basal and after middle cerebral artery occlusion (MCAO). In in vitro study, EPCs were transfected with adenovirus carrying null (Ad-null) or CXCR4 (Ad-CXCR4) followed with high glucose (HG) treatment for 4 days. For pathway block experiments, cells were pre-incubated with PI3K inhibitor or nitric oxide synthase (NOS) inhibitor for two hours. The CXCR4 expression, function and apoptosis of EPCs were determined. The p-Akt/Akt and p-eNOS/eNOS expression in EPCs were also measured. In in vivo study, EPCs transfected with Ad-null or Ad-CXCR4 were infused into mice via tail vein. On day 2 and 7, the cerebral blood flow, neurologic deficit score, infarct volume, cerebral microvascular density, angiogenesis and neurogenesis were determined. We found: 1) The levels of plasma SDF-1 alpha and circulating CD34+CXCR4+ cells were decreased in db/db mice; 2) The basal level of SDF-1 alpha and MCAO-induced up-regulation of SDF-1 alpha/CXCR4 axis were reduced in the brain of db/db mice; 3) Ad-CXCR4 transfection increased CXCR4 expression in EPCs and enhanced EPC colonic forming capacity; 4) Ad-CXCR4 transfection prevented EPCs from HG-induced dysfunction (migration and tube formation) and apoptosis via activation of PI3K/Akt/eNOS signal pathway; 4) Ad-CXCR4 transfection enhanced the efficacy of EPC infusion in attenuating infarct volume and promoting angiogenesis and neurogenesis. Our data suggest that Ad-CXCR4 primed EPCs have better therapeutic effects for ischemia stroke in diabetes than unmodified EPCs do.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available