4.6 Article

GIP-Overexpressing Mice Demonstrate Reduced Diet-Induced Obesity and Steatosis, and Improved Glucose Homeostasis

Journal

PLOS ONE
Volume 7, Issue 7, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0040156

Keywords

-

Funding

  1. Canadian Diabetes Association (CDA)
  2. Canadian Institutes of Health Research (CIHR)

Ask authors/readers for more resources

Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone that potentiates glucose-stimulated insulin secretion during a meal. Since GIP has also been shown to exert beta-cell prosurvival and adipocyte lipogenic effects in rodents, both GIP receptor agonists and antagonists have been considered as potential therapeutics in type 2 diabetes (T2DM). In the present study, we tested the hypothesis that chronically elevating GIP levels in a transgenic (Tg) mouse model would increase adipose tissue expansion and exert beneficial effects on glucose homeostasis. In contrast, although GIP Tg mice demonstrated enhanced b-cell function, resulting in improved glucose tolerance and insulin sensitivity, they exhibited reduced diet-induced obesity. Adipose tissue macrophage infiltration and hepatic steatosis were both greatly reduced, and a number of genes involved in lipid metabolism/inflammatory signaling pathways were found to be down-regulated. Reduced adiposity in GIP Tg mice was associated with decreased energy intake, involving overexpression of hypothalamic GIP. Together, these studies suggest that, in the context of over-nutrition, transgenic GIP overexpression has the potential to improve hepatic and adipocyte function as well as glucose homeostasis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available